本题要求编写程序,计算2个有理数的和、差、积、商。
输入格式:
输入在一行中按照“a1/b1 a2/b2”的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为0。
输出格式:
分别在4行中按照“有理数1 运算符 有理数2 = 结果”的格式顺序输出2个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式“k a/b”,其中k是整数部分,a/b是最简分数部分;若为负数,则须加括号;若除法分母为0,则输出“Inf”。题目保证正确的输出中没有超过整型范围的整数。
输入样例1:2/3 -4/2
输出样例1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3 2/3 * (-2) = (-1 1/3) 2/3 / (-2) = (-1/3)输入样例2:
5/3 0/6
输出样例2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3 1 2/3 * 0 = 0 1 2/3 / 0 = Inf(注意两个数相乘结果储存长度)
#includelong long Gcd(long long a,long long b);void print(long long a,long long b);long long Getkab(long long *a,long long *b);void simple(long long *a,long long *b);int main(){ long long a1,b1,a2,b2; long long add1,add2,sub1,sub2,mul1,mul2,div1,div2; scanf("%lld/%lld %lld/%lld",&a1,&b1,&a2,&b2); add1=a1*b2+a2*b1;add2=b1*b2;//+ sub1=a1*b2-a2*b1;sub2=b1*b2;//- mul1=a1*a2;mul2=b1*b2;//* div1=a1*b2;div2=b1*a2;//_/ if(div2<0){ div1=-div1; div2=-div2; } print(a1,b1); printf(" + "); print(a2,b2); printf(" = "); print(add1,add2); printf("\n"); print(a1,b1); printf(" - "); print(a2,b2); printf(" = "); print(sub1,sub2); printf("\n"); print(a1,b1); printf(" * "); print(a2,b2); printf(" = "); print(mul1,mul2); printf("\n"); print(a1,b1); printf(" / "); print(a2,b2); printf(" = "); if(div2==0){ printf("Inf"); } else{ print(div1,div2); }}long long Gcd(long long a,long long b){ long long r,t; if(a 0)printf("%lld %lld/%lld",k,a,b); if(k<0)printf("(%lld %lld/%lld)",k,a,b); if(k==0){ if(a<0)printf("(%lld/%lld)",a,b); if(a>0)printf("%lld/%lld",a,b); } return;}long long Getkab(long long *a,long long *b){ long long k; if(*a>0){ k=*a/(*b); *a=*a%(*b); return k; } if(*a<0){ k=*a/(*b); if(k)*a=(-*a)%(*b); return k; }}void simple(long long *a,long long *b){ long long ta,tb; ta=*a;tb=*b; if(*a>0){ *a/=Gcd(ta,tb); *b/=Gcd(ta,tb); } if(*a<0){ *a/=Gcd((-ta),tb); *b/=Gcd((-ta),tb); }}